• Skip to main content
  • Skip to primary navigation
  • Skip to primary sidebar
Header Search Widget

Mechanical Engineering, University of California, Berkeley

  • News
  • Research
    • Facilities
    • Software
  • Team
    • Our Team
    • Prof. Gollner
    • Join our Team
  • Publications
  • Resources
    • Resources and Links
    • Wildfire Resources
    • Opportunities
    • Recommendations
    • Software
    • Directions and Contact
  • Learning Material

New article published in Physical Review Fluids

November 19, 2020 by Michael Gollner

We published a new article, led by former graduate student and now postdoctoral scholar Sriram “Ram” Bharath Hariharan: “Effects of circulation and buoyancy on the transition from a fire whirl to a blue whirl,” published in Physics of Fluids.

Abstract:

The relative influence of circulation and buoyancy on fire whirls (FWs), blue whirls (BWs), and the transition between these regimes of a whirling flame is investigated using a combination of experimental data and scaling analyses. FWs are whirling, turbulent, cylindrical yellow (sooting) flame structures that form naturally in fires and are here created in laboratory experiments. In contrast, a BW is a laminar, blue flame (nonsooting) with an inverted conical shape. Measurements of the circulation and heat-release rate are combined with measurements of the flame geometry, defined by the flame width and the height, to provide characteristic length scales for these whirling-flame regimes. Using these, a nondimensional circulation (Γ∗f) and a heat-release rate (˙Q∗f) were defined and shown to correspond to azimuthal and axial (buoyancy driven) momenta, respectively. The ratio R∗=Γ∗f/˙Q∗f, a quantity analogous to the swirl number used to characterize swirling jets, was evaluated for FWs and BWs. For FWs, R∗<1, so that axial momentum is greater than azimuthal momentum and the flame is dominated by buoyant momentum. For BWs, R∗>1, so that the flame is circulation dominated. This is argued to be consistent with vortex breakdown being an important part of the transition of FWs to BWs. This work presents a basis for predicting when a BW will form and remain a stable regime.

Filed Under: Uncategorized

Primary Sidebar

Recent Posts

  • Lilly Etzenbach wins first place poster award at ASGSR for work on astronaut clothing flammability
  • Siyan Wang Receives Student Scholar Award at 2024 SFPE Annual Conference
  • Berkeley Engineering Highlights Wildfire Spread Model
  • Students present at Stanford Combustion conference
  • Professor Gollner testifies to Congress
  • Berkeley Engineering
  • UC Berkeley
  • youtube
  • facebook
  • X
  • Privacy
  • Accessibility
  • Nondiscrimination

© 2016–2025 UC Regents   |   Log in