• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Header Search Widget

Mechanical Engineering, University of California, Berkeley

  • News
  • Research
    • Facilities
    • Software
  • Team
    • Our Team
    • Prof. Gollner
    • Join our Team
  • Publications
  • Resources
    • Resources and Links
    • Wildfire Resources
    • Opportunities
    • Recommendations
    • Software
    • Directions and Contact
  • Learning Material

Congratulations to Brian Hall on Successfully Defending his MS Thesis!

April 15, 2014 by admin

Brian Hall, an MS student in Fire Protection Engineering successfully defended  his thesis  on April 9th!

Picture1

Title: Transient Fire Loads on Aluminum Ferries
Committee:
Professor Michael J. Gollner, Committee Chair
Professor James Milke
Professor Stanislav Stoliarov
Abstract:
The transient fire load aboard aluminum passenger ferries is studied to determine the contribution that baggage has on increasing the temperature of the compartment overhead, which serves as the deck for passenger rendezvous during fire emergencies on many large vessels. Single-point and average temperature maximums are compared for a variety of baggage fire scenarios to determine if critical temperatures are reached that would compromise the structural integrity of the aluminum.
A survey of passenger ferry vessels has been performed to determine the extent and type of baggage loading present in passenger compartments. The baggage type, carriage rate, and baggage weight were recorded to determine the overall fire load as well as the average weight of luggage brought on board. Ferry vessels were examined for problem locations and potential sources of elevated flame lengths that may cause the flame to impinge directly on the aluminum structure overhead.
The Fire Dynamics Simulator (FDS) by the National institute of Standards and Technology (NIST) is used to model a representative large passenger ferry compartment. Multiple scenarios are simulated with baggage and seat burning along with consideration of flame spread based on a critical heat flux and collected survey results.
Based on the results of the survey, it was determined that the majority of aluminum ferries, when fully loaded, attain higher fuel loads than allowed by current Coast Guard requirements. Subsequent simulations also revealed that the current level of loading compromises the structural integrity of the aluminum superstructure on an average ferry. Additional scenarios tested, such as a stroller parked in the corner of a passenger compartment, would raise the temperature of the aluminum superstructure to a level that would compromise safety. It is recommended that regulatory changes be made to ensure that these extreme scenarios are avoided to protect life and property.

 

Filed Under: News, Uncategorized

Primary Sidebar

Recent Posts

  • Students present at Stanford Combustion conference
  • Professor Gollner testifies to Congress
  • Christina Liveretou awarded Onassis Foundation Scholarship
  • Congratulations to Xingyu Ren on the SFPE Student Scholar Award!
  • Prof. Gollner Presents at 2021 UC Wildfire Symposium Series

Michael GollnerFollow5,9772,359

Michael Gollner
Retweet on TwitterMichael Gollner Retweeted
27 Mar

Smoke flow produced by smouldering combustion

Reply on TwitterRetweet on Twitter3Like on Twitter22Twitter
Retweet on TwitterMichael Gollner Retweeted
24 Mar

Units being released.

Sounds like early indications show a lithium ion battery responsible. (Scooter battery most likely)

Reply on TwitterRetweet on Twitter1Like on Twitter7Twitter
22 Mar

Beautiful work by ⁦@Xiaoyu_Ju⁩ & Yuji Nakamura: New Technique Generates Non-Flickering Flames at Normal Gravity and Atmospheric Pressure. I’ve watched this flickering flame development for years and the results have been fascinating

APS Physics

New Technique Generates Non-Flickering Flames at Normal Gravity and Atmospheric Pressure

Flickering flames are more unstable. Researchers have come up with a novel way to keep them still.

www.aps.org

Reply on TwitterRetweet on Twitter1Like on Twitter9Twitter
Load More...
  • Berkeley Engineering
  • UC Berkeley
  • PRIVACY
  • ACCESSIBILITY
  • NONDISCRIMINATION
  • youtube
  • facebook
  • twitter

© 2016–2023 UC Regents   |   Log in