• Skip to main content
  • Skip to primary navigation
Header Search Widget

Mechanical Engineering, University of California, Berkeley

  • News
  • Research
    • Facilities
    • Software
  • Team
    • Our Team
    • Prof. Gollner
    • Join our Team
  • Publications
  • Resources
    • Resources and Links
    • Wildfire Resources
    • Opportunities
    • Recommendations
    • Software
    • Directions and Contact
  • Learning Material

Publications

 Google Scholar Citations | Research Gate Profile | UC eScholarship Repository (Pre-Prints) | Reports, Articles and Theses | Dataset Repositry

Show all

1.

Miller, Colin H; Tang, Wei; Sluder, Evan; Finney, Mark A; McAllister, Sara S; Forthofer, Jason M; Gollner, Michael J

Boundary layer instabilities in mixed convection and diffusion flames with an unheated starting length Journal Article

In: International Journal of Heat and Mass Transfer, vol. 118, pp. 1243–1256, 2018, ISSN: 00179310.

Abstract | Links | BibTeX

@article{Miller2018,
title = {Boundary layer instabilities in mixed convection and diffusion flames with an unheated starting length},
author = {Colin H Miller and Wei Tang and Evan Sluder and Mark A Finney and Sara S McAllister and Jason M Forthofer and Michael J Gollner},
url = {https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.040},
doi = {10.1016/j.ijheatmasstransfer.2017.11.040},
issn = {00179310},
year = {2018},
date = {2018-01-01},
journal = {International Journal of Heat and Mass Transfer},
volume = {118},
pages = {1243--1256},
publisher = {Elsevier Ltd},
abstract = {The following study examines the role of streaklike coherent structures in mixed convection via a horizontal heated boundary layer possessing an unheated starting length. The three-dimensionality of flows in this configuration, which is regularly encountered in practical scenarios, has been experimentally probed using non-invasive detection methods. Experiments were conducted in a wind tunnel at the Missoula Fire Sciences Lab, and the wind speed was varied from 0.70 to 2.47 m/s. The buoyant source was varied significantly by either manipulating the surface temperature of a downstream hot plate or employing a diffusion flame. Streaks were visualized in the flow by means of infrared imaging or high speed video, and a novel detection algorithm was developed to quantify important properties and to spatially track these structures over time. Lognormal distributions of spacing were observed initially, and gradual deviations from this fit indicated a deviation from streaklike behavior. The onset of streaks was determined to be controlled by the pre-existing disturbances populating the incoming boundary layer. Further downstream, buoyant forces dominated the growth and deformation of these structures, whose length scale increased significantly. The width of structures was observed to asymptote to a stable value downstream, and this was determined to be a consequence of the finite distance over which heating was applied.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

The following study examines the role of streaklike coherent structures in mixed convection via a horizontal heated boundary layer possessing an unheated starting length. The three-dimensionality of flows in this configuration, which is regularly encountered in practical scenarios, has been experimentally probed using non-invasive detection methods. Experiments were conducted in a wind tunnel at the Missoula Fire Sciences Lab, and the wind speed was varied from 0.70 to 2.47 m/s. The buoyant source was varied significantly by either manipulating the surface temperature of a downstream hot plate or employing a diffusion flame. Streaks were visualized in the flow by means of infrared imaging or high speed video, and a novel detection algorithm was developed to quantify important properties and to spatially track these structures over time. Lognormal distributions of spacing were observed initially, and gradual deviations from this fit indicated a deviation from streaklike behavior. The onset of streaks was determined to be controlled by the pre-existing disturbances populating the incoming boundary layer. Further downstream, buoyant forces dominated the growth and deformation of these structures, whose length scale increased significantly. The width of structures was observed to asymptote to a stable value downstream, and this was determined to be a consequence of the finite distance over which heating was applied.

Close

  • https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.040
  • doi:10.1016/j.ijheatmasstransfer.2017.11.040

Close

2.

Miller, C H; Tang, W; Sluder, E; Finney, M A; McAllister, S S; Forthofer, J M; Gollner, M J

Boundary layer instabilities in mixed convection and diffusion flames with an unheated starting length Journal Article

In: International Journal of Heat and Mass Transfer, vol. 118, 2018, ISSN: 00179310.

Abstract | Links | BibTeX

@article{Miller2018a,
title = {Boundary layer instabilities in mixed convection and diffusion flames with an unheated starting length},
author = {C H Miller and W Tang and E Sluder and M A Finney and S S McAllister and J M Forthofer and M J Gollner},
doi = {10.1016/j.ijheatmasstransfer.2017.11.040},
issn = {00179310},
year = {2018},
date = {2018-01-01},
journal = {International Journal of Heat and Mass Transfer},
volume = {118},
abstract = {textcopyright 2017 The following study examines the role of streaklike coherent structures in mixed convection via a horizontal heated boundary layer possessing an unheated starting length. The three-dimensionality of flows in this configuration, which is regularly encountered in practical scenarios, has been experimentally probed using non-invasive detection methods. Experiments were conducted in a wind tunnel at the Missoula Fire Sciences Lab, and the wind speed was varied from 0.70 to 2.47 m/s. The buoyant source was varied significantly by either manipulating the surface temperature of a downstream hot plate or employing a diffusion flame. Streaks were visualized in the flow by means of infrared imaging or high speed video, and a novel detection algorithm was developed to quantify important properties and to spatially track these structures over time. Lognormal distributions of spacing were observed initially, and gradual deviations from this fit indicated a deviation from streaklike behavior. The onset of streaks was determined to be controlled by the pre-existing disturbances populating the incoming boundary layer. Further downstream, buoyant forces dominated the growth and deformation of these structures, whose length scale increased significantly. The width of structures was observed to asymptote to a stable value downstream, and this was determined to be a consequence of the finite distance over which heating was applied.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

textcopyright 2017 The following study examines the role of streaklike coherent structures in mixed convection via a horizontal heated boundary layer possessing an unheated starting length. The three-dimensionality of flows in this configuration, which is regularly encountered in practical scenarios, has been experimentally probed using non-invasive detection methods. Experiments were conducted in a wind tunnel at the Missoula Fire Sciences Lab, and the wind speed was varied from 0.70 to 2.47 m/s. The buoyant source was varied significantly by either manipulating the surface temperature of a downstream hot plate or employing a diffusion flame. Streaks were visualized in the flow by means of infrared imaging or high speed video, and a novel detection algorithm was developed to quantify important properties and to spatially track these structures over time. Lognormal distributions of spacing were observed initially, and gradual deviations from this fit indicated a deviation from streaklike behavior. The onset of streaks was determined to be controlled by the pre-existing disturbances populating the incoming boundary layer. Further downstream, buoyant forces dominated the growth and deformation of these structures, whose length scale increased significantly. The width of structures was observed to asymptote to a stable value downstream, and this was determined to be a consequence of the finite distance over which heating was applied.

Close

  • doi:10.1016/j.ijheatmasstransfer.2017.11.040

Close

3.

Miller, Colin H; Tang, Wei; Finney, Mark A; McAllister, Sara S; Forthofer, Jason M; Gollner, Michael J

Journal Article

In: Combustion and Flame, vol. 181, pp. 123 - 135, 2017, ISSN: 0010-2180.

Links | BibTeX

@article{MILLER2017123,
author = {Colin H Miller and Wei Tang and Mark A Finney and Sara S McAllister and Jason M Forthofer and Michael J Gollner},
url = {http://www.sciencedirect.com/science/article/pii/S0010218017300998},
doi = {https://doi.org/10.1016/j.combustflame.2017.03.007},
issn = {0010-2180},
year = {2017},
date = {2017-01-01},
journal = {Combustion and Flame},
volume = {181},
pages = {123 - 135},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

  • http://www.sciencedirect.com/science/article/pii/S0010218017300998
  • doi:https://doi.org/10.1016/j.combustflame.2017.03.007

Close

Magazine Articles

Pathways for Building Fire Spread in the Wildland Urban Interface
Gollner, M.J., Society of Fire Protection Engineers’ Emerging Trends Newsletter, Issue 101. 2015

Pathways for Building Fire Spread in the Wildland Urban Interface
Gollner, M.J., SFPE Emerging Trends Newsletter, Society of Fire Protection Engineers, August, 2015.

The Flammability of a Storage Commodity
Gollner, M.J., Fire Protection Engineering Magazine, Society of Fire Protection Engineers, April 2014.

Theses

Effect of Microgravity on the Development and Structure of Fire Whirls

Jones, Michael, M.S. Thesis, University of Maryland College Park, 2020

A STUDY OF INTERMITTENT CONVECTIVE HEATING OF FINE LIVE WILDLAND FUELS

Orcurto, Ashlynne R, M.S. Thesis, Univeristy of Maryland, College Park, 2020

Laboratory Studies on the Generation of Firebrands from Cylindrical Wooden Dowels
Caton, Sara, M.S. Thesis, University of Maryland, College Park, 2017

Thermal Characterization of Firebrand Piles
Hakes, Raquel Sara Pilar, M.S. Thesis, University of Maryland, College Park, 2017

The Structure of the Blue Whirl: A Soot-Free Reacting Vortex Phenomenon
Sriram Bharath Hariharan, M.S. Thesis, University of Maryland, College Park, 2017

Moisture Content Effects on Energy and Emissions Released During Combustion of Pyrophytic Vegetation
Nathaniel Andrew May, M.S. Thesis, University of Maryland, College Park, 2017
A Fundamental Study of Boundary Layer Diffusion Flames
Singh, Ajay. Ph.D. Thesis, University of Maryland, College Park, 2015.
In Situ Burning Alternatives
Cohen, Brian, M.S. Thesis, University of Maryland, College Park, 2014.
Flame Spread Through Wooden Dowels
Zhao, Zhao, M.S. Thesis, University of Maryland, College Park, 2014.
Upward Flame Spread over Discreet Fuels
Miller, Colin, M.S. Thesis, University of Maryland, College Park, 2014
Studying Wildland Fire Spread Using Stationary Burners
Gorham, D.J., M.S. Thesis, University of Maryland, College Park, 2014.
Transient Fire Load on Aluminum Ferries (PDF)
Hall, B. M.S. Thesis, University of Maryland, College Park, 2014.
Studies on Upward Flame Spread (PDF, Official Copy, Presentation)
Gollner, MJ. Ph.D. Dissertation, University of California, San Diego, 2012.
A Fundamental Approach to Storage Commodity Classification (PDF, Proquest, Presentation)
Gollner, M.J. M.S. Thesis, University of California, San Diego, 2010.

Reports

Literature Review on Spaceport Fire Safety (NFPA Site)
Erin Griffith, Alicea Fitzpatrick, Seth Lattner, Joseph Dowling, Michael J. Gollner

Towards Data-Driven Operational Wildfire Spread Modeling: A REPORT OF THE NSF-FUNDED WIFIRE WORKSHOP
Gollner, M.J. and Trouve, A., 2015.

Pathways for Building Fire Spread at the Wildland Urban Interface (NFPA Site)
Gollner, M.J., Hakes, R., Caton, S. and Kohler, K., Fire Protection Research Foundation, National Fire Protection Association, March, 2015.

Literature Review on Hybrid Fire Suppression Systems
Raia, P. and Gollner, M.J., Fire Protection Research Foundation, National Fire Protection Association, May 2014.

Fire Safety Design and Sustainable Buildings: Challenges and Opportunities: Report of a National Symposium
Gollner, M.J., Kimball, A. and Vecchiarelli, T., Fire Protection Research Foundation, National Fire Protection Association, 2013.

Copyright Notes

In following copyright law, most journals allow their authors to share post-prints of their journal articles (essentially pre-prints with changes from the review process but lacking any publisher modifications or typesetting). Therefore, I have posted PDF Post-Prints of most journal articles in addition to document object identifier (DOI) links to the articles on the publishers site (sometimes requiring subscription). For more information about journal copyrights, please visit http://www.sherpa.ac.uk/romeo/. I have posted some conference proceedings on Research Gate. If you do not have access to a final article version, please contact me.

  • Berkeley Engineering
  • UC Berkeley
  • youtube
  • facebook
  • X
  • Privacy
  • Accessibility
  • Nondiscrimination

© 2016–2025 UC Regents   |   Log in