• Skip to main content
  • Skip to primary navigation
Header Search Widget

Mechanical Engineering, University of California, Berkeley

  • News
  • Research
    • Facilities
    • Software
  • Team
    • Our Team
    • Prof. Gollner
    • Join our Team
  • Publications
  • Resources
    • Resources and Links
    • Wildfire Resources
    • Opportunities
    • Recommendations
    • Software
    • Directions and Contact
  • Learning Material

Publications

 Google Scholar Citations | Research Gate Profile | UC eScholarship Repository (Pre-Prints) | Reports, Articles and Theses | Dataset Repositry

Show all

1.

Tang, W; Miller, C H; Gollner, M J

Local flame attachment and heat fluxes in wind-driven line fires Journal Article

In: Proceedings of the Combustion Institute, vol. 36, no. 2, 2017, ISSN: 15407489.

Abstract | Links | BibTeX

@article{Tang2017a,
title = {Local flame attachment and heat fluxes in wind-driven line fires},
author = {W Tang and C H Miller and M J Gollner},
doi = {10.1016/j.proci.2016.06.064},
issn = {15407489},
year = {2017},
date = {2017-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {36},
number = {2},
abstract = {textcopyright 2016 by The Combustion Institute. Published by Elsevier Inc. A detailed experimental investigation of turbulent diffusion flames under forced flow was conducted to study local heat fluxes to a nearly adiabatic surface downstream of a gaseous line burner. A variety of ambient wind velocities and fuel flow rates were employed to study different fire scenarios modeling the dynamics of wind-driven fire spread as found in wildland, mine or tunnel fires. The downstream heat flux distribution was correlated as a piecewise function with the Richardson number in two regimes, the first with higher heat fluxes, where the flame remained attached the downstream surface (attached region) and the second with a steeper decay of heat fluxes (plume region). Analysis of the heat flux distribution revealed that local heat fluxes roughly reach a maximum where the Richardson number equaled unity. This was thought to be a good marker of the regime where the flame detaches from the surface, e.g. where buoyancy from the flame overcomes inertial forces from the oncoming flow. This observation was further corroborated by analysis of side-view images of the flame, which showed the attachment location was linearly correlated with the location where the Richardson number equaled unity. The results from this study suggest that local heat flux values reach a maximum at the transition between a momentum-dominated (attached, wind-driven) to buoyancy-dominated (plume or fire) regime in forced flow scenarios. The results have interesting implications to the problem of flame attachment, which is known to accelerate fire spread in both inclined and wind-driven fire scenarios.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

textcopyright 2016 by The Combustion Institute. Published by Elsevier Inc. A detailed experimental investigation of turbulent diffusion flames under forced flow was conducted to study local heat fluxes to a nearly adiabatic surface downstream of a gaseous line burner. A variety of ambient wind velocities and fuel flow rates were employed to study different fire scenarios modeling the dynamics of wind-driven fire spread as found in wildland, mine or tunnel fires. The downstream heat flux distribution was correlated as a piecewise function with the Richardson number in two regimes, the first with higher heat fluxes, where the flame remained attached the downstream surface (attached region) and the second with a steeper decay of heat fluxes (plume region). Analysis of the heat flux distribution revealed that local heat fluxes roughly reach a maximum where the Richardson number equaled unity. This was thought to be a good marker of the regime where the flame detaches from the surface, e.g. where buoyancy from the flame overcomes inertial forces from the oncoming flow. This observation was further corroborated by analysis of side-view images of the flame, which showed the attachment location was linearly correlated with the location where the Richardson number equaled unity. The results from this study suggest that local heat flux values reach a maximum at the transition between a momentum-dominated (attached, wind-driven) to buoyancy-dominated (plume or fire) regime in forced flow scenarios. The results have interesting implications to the problem of flame attachment, which is known to accelerate fire spread in both inclined and wind-driven fire scenarios.

Close

  • doi:10.1016/j.proci.2016.06.064

Close

Magazine Articles

Pathways for Building Fire Spread in the Wildland Urban Interface
Gollner, M.J., Society of Fire Protection Engineers’ Emerging Trends Newsletter, Issue 101. 2015

Pathways for Building Fire Spread in the Wildland Urban Interface
Gollner, M.J., SFPE Emerging Trends Newsletter, Society of Fire Protection Engineers, August, 2015.

The Flammability of a Storage Commodity
Gollner, M.J., Fire Protection Engineering Magazine, Society of Fire Protection Engineers, April 2014.

Theses

Effect of Microgravity on the Development and Structure of Fire Whirls

Jones, Michael, M.S. Thesis, University of Maryland College Park, 2020

A STUDY OF INTERMITTENT CONVECTIVE HEATING OF FINE LIVE WILDLAND FUELS

Orcurto, Ashlynne R, M.S. Thesis, Univeristy of Maryland, College Park, 2020

Laboratory Studies on the Generation of Firebrands from Cylindrical Wooden Dowels
Caton, Sara, M.S. Thesis, University of Maryland, College Park, 2017

Thermal Characterization of Firebrand Piles
Hakes, Raquel Sara Pilar, M.S. Thesis, University of Maryland, College Park, 2017

The Structure of the Blue Whirl: A Soot-Free Reacting Vortex Phenomenon
Sriram Bharath Hariharan, M.S. Thesis, University of Maryland, College Park, 2017

Moisture Content Effects on Energy and Emissions Released During Combustion of Pyrophytic Vegetation
Nathaniel Andrew May, M.S. Thesis, University of Maryland, College Park, 2017
A Fundamental Study of Boundary Layer Diffusion Flames
Singh, Ajay. Ph.D. Thesis, University of Maryland, College Park, 2015.
In Situ Burning Alternatives
Cohen, Brian, M.S. Thesis, University of Maryland, College Park, 2014.
Flame Spread Through Wooden Dowels
Zhao, Zhao, M.S. Thesis, University of Maryland, College Park, 2014.
Upward Flame Spread over Discreet Fuels
Miller, Colin, M.S. Thesis, University of Maryland, College Park, 2014
Studying Wildland Fire Spread Using Stationary Burners
Gorham, D.J., M.S. Thesis, University of Maryland, College Park, 2014.
Transient Fire Load on Aluminum Ferries (PDF)
Hall, B. M.S. Thesis, University of Maryland, College Park, 2014.
Studies on Upward Flame Spread (PDF, Official Copy, Presentation)
Gollner, MJ. Ph.D. Dissertation, University of California, San Diego, 2012.
A Fundamental Approach to Storage Commodity Classification (PDF, Proquest, Presentation)
Gollner, M.J. M.S. Thesis, University of California, San Diego, 2010.

Reports

Literature Review on Spaceport Fire Safety (NFPA Site)
Erin Griffith, Alicea Fitzpatrick, Seth Lattner, Joseph Dowling, Michael J. Gollner

Towards Data-Driven Operational Wildfire Spread Modeling: A REPORT OF THE NSF-FUNDED WIFIRE WORKSHOP
Gollner, M.J. and Trouve, A., 2015.

Pathways for Building Fire Spread at the Wildland Urban Interface (NFPA Site)
Gollner, M.J., Hakes, R., Caton, S. and Kohler, K., Fire Protection Research Foundation, National Fire Protection Association, March, 2015.

Literature Review on Hybrid Fire Suppression Systems
Raia, P. and Gollner, M.J., Fire Protection Research Foundation, National Fire Protection Association, May 2014.

Fire Safety Design and Sustainable Buildings: Challenges and Opportunities: Report of a National Symposium
Gollner, M.J., Kimball, A. and Vecchiarelli, T., Fire Protection Research Foundation, National Fire Protection Association, 2013.

Copyright Notes

In following copyright law, most journals allow their authors to share post-prints of their journal articles (essentially pre-prints with changes from the review process but lacking any publisher modifications or typesetting). Therefore, I have posted PDF Post-Prints of most journal articles in addition to document object identifier (DOI) links to the articles on the publishers site (sometimes requiring subscription). For more information about journal copyrights, please visit http://www.sherpa.ac.uk/romeo/. I have posted some conference proceedings on Research Gate. If you do not have access to a final article version, please contact me.

  • Berkeley Engineering
  • UC Berkeley
  • youtube
  • facebook
  • X
  • Privacy
  • Accessibility
  • Nondiscrimination

© 2016–2025 UC Regents   |   Log in