• Skip to main content
  • Skip to primary navigation
Header Search Widget

Mechanical Engineering, University of California, Berkeley

  • News
  • Research
    • Facilities
    • Software
  • Team
    • Our Team
    • Prof. Gollner
    • Join our Team
  • Publications
  • Resources
    • Resources and Links
    • Wildfire Resources
    • Opportunities
    • Recommendations
    • Software
    • Directions and Contact
  • Learning Material

Publications

 Google Scholar Citations | Research Gate Profile | UC eScholarship Repository (Pre-Prints) | Reports, Articles and Theses | Dataset Repositry

Show all

1.

Jiang, L; Miller, C H; Gollner, M J; Sun, J -H

Sample width and thickness effects on horizontal flame spread over a thin PMMA surface Journal Article

In: Proceedings of the Combustion Institute, vol. 36, no. 2, 2017, ISSN: 15407489.

Abstract | Links | BibTeX

@article{Jiang2017,
title = {Sample width and thickness effects on horizontal flame spread over a thin PMMA surface},
author = {L Jiang and C H Miller and M J Gollner and J -H Sun},
doi = {10.1016/j.proci.2016.06.157},
issn = {15407489},
year = {2017},
date = {2017-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {36},
number = {2},
abstract = {textcopyright 2016 Elsevier Ltd. In previous studies, it was found that there exists a minimum flame spread rate under a certain range of sample widths for steady burning horizontal flame spread. While this was hypothesized to occur due to a transition between convectively-dominated to radiation-dominated flame spread, no measurements were performed to quantify this process. This paper presents a detailed experimental study investigating sample width and thickness effects on steady horizontal flame spread, including detailed measurements of the components of radiation, convection, and conduction. Water-cooled heat flux gauges, R-type micro-thermocouples traversed through the gas phase, and K-type thermocouples embedded in the solid phase were all used to deduce these heat transfer components. Results show that convective heat transfer decreases with increasing sample width as the shape of the flame front is on average farther from the fuel surface, while radiation increases as the view factor from the fire to unignited fuel increases with larger sample size. Conduction measured within the fuel sample is, as expected, confirmed to be negligible. Comparing a combination of these components, the total heat flux first decreases as the competition between radiation and convection changes, followed by steadily increasing heat fluxes as the width of the sample increases. Heat feedback also influences the sample pyrolysis rate, so there was a coupled response following this trend. The apparent dip followed by an increase in total heat flux can now explain why a period of minimum flame spread rate exists. Modification of an existing theory also matches experimental results very closely. Finally, a dimensionless heat-release rate for different sample configurations is used to scale the dimensionless flame heights with a power-law correlation having exponents 0.39 for Q∗ textgreater 1 and 0.6 for Q∗ textless 1, closely resembling the 2/5 and 2/3 predicted by Zukoski's model.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

textcopyright 2016 Elsevier Ltd. In previous studies, it was found that there exists a minimum flame spread rate under a certain range of sample widths for steady burning horizontal flame spread. While this was hypothesized to occur due to a transition between convectively-dominated to radiation-dominated flame spread, no measurements were performed to quantify this process. This paper presents a detailed experimental study investigating sample width and thickness effects on steady horizontal flame spread, including detailed measurements of the components of radiation, convection, and conduction. Water-cooled heat flux gauges, R-type micro-thermocouples traversed through the gas phase, and K-type thermocouples embedded in the solid phase were all used to deduce these heat transfer components. Results show that convective heat transfer decreases with increasing sample width as the shape of the flame front is on average farther from the fuel surface, while radiation increases as the view factor from the fire to unignited fuel increases with larger sample size. Conduction measured within the fuel sample is, as expected, confirmed to be negligible. Comparing a combination of these components, the total heat flux first decreases as the competition between radiation and convection changes, followed by steadily increasing heat fluxes as the width of the sample increases. Heat feedback also influences the sample pyrolysis rate, so there was a coupled response following this trend. The apparent dip followed by an increase in total heat flux can now explain why a period of minimum flame spread rate exists. Modification of an existing theory also matches experimental results very closely. Finally, a dimensionless heat-release rate for different sample configurations is used to scale the dimensionless flame heights with a power-law correlation having exponents 0.39 for Q∗ textgreater 1 and 0.6 for Q∗ textless 1, closely resembling the 2/5 and 2/3 predicted by Zukoski's model.

Close

  • doi:10.1016/j.proci.2016.06.157

Close

Magazine Articles

Pathways for Building Fire Spread in the Wildland Urban Interface
Gollner, M.J., Society of Fire Protection Engineers’ Emerging Trends Newsletter, Issue 101. 2015

Pathways for Building Fire Spread in the Wildland Urban Interface
Gollner, M.J., SFPE Emerging Trends Newsletter, Society of Fire Protection Engineers, August, 2015.

The Flammability of a Storage Commodity
Gollner, M.J., Fire Protection Engineering Magazine, Society of Fire Protection Engineers, April 2014.

Theses

Effect of Microgravity on the Development and Structure of Fire Whirls

Jones, Michael, M.S. Thesis, University of Maryland College Park, 2020

A STUDY OF INTERMITTENT CONVECTIVE HEATING OF FINE LIVE WILDLAND FUELS

Orcurto, Ashlynne R, M.S. Thesis, Univeristy of Maryland, College Park, 2020

Laboratory Studies on the Generation of Firebrands from Cylindrical Wooden Dowels
Caton, Sara, M.S. Thesis, University of Maryland, College Park, 2017

Thermal Characterization of Firebrand Piles
Hakes, Raquel Sara Pilar, M.S. Thesis, University of Maryland, College Park, 2017

The Structure of the Blue Whirl: A Soot-Free Reacting Vortex Phenomenon
Sriram Bharath Hariharan, M.S. Thesis, University of Maryland, College Park, 2017

Moisture Content Effects on Energy and Emissions Released During Combustion of Pyrophytic Vegetation
Nathaniel Andrew May, M.S. Thesis, University of Maryland, College Park, 2017
A Fundamental Study of Boundary Layer Diffusion Flames
Singh, Ajay. Ph.D. Thesis, University of Maryland, College Park, 2015.
In Situ Burning Alternatives
Cohen, Brian, M.S. Thesis, University of Maryland, College Park, 2014.
Flame Spread Through Wooden Dowels
Zhao, Zhao, M.S. Thesis, University of Maryland, College Park, 2014.
Upward Flame Spread over Discreet Fuels
Miller, Colin, M.S. Thesis, University of Maryland, College Park, 2014
Studying Wildland Fire Spread Using Stationary Burners
Gorham, D.J., M.S. Thesis, University of Maryland, College Park, 2014.
Transient Fire Load on Aluminum Ferries (PDF)
Hall, B. M.S. Thesis, University of Maryland, College Park, 2014.
Studies on Upward Flame Spread (PDF, Official Copy, Presentation)
Gollner, MJ. Ph.D. Dissertation, University of California, San Diego, 2012.
A Fundamental Approach to Storage Commodity Classification (PDF, Proquest, Presentation)
Gollner, M.J. M.S. Thesis, University of California, San Diego, 2010.

Reports

Literature Review on Spaceport Fire Safety (NFPA Site)
Erin Griffith, Alicea Fitzpatrick, Seth Lattner, Joseph Dowling, Michael J. Gollner

Towards Data-Driven Operational Wildfire Spread Modeling: A REPORT OF THE NSF-FUNDED WIFIRE WORKSHOP
Gollner, M.J. and Trouve, A., 2015.

Pathways for Building Fire Spread at the Wildland Urban Interface (NFPA Site)
Gollner, M.J., Hakes, R., Caton, S. and Kohler, K., Fire Protection Research Foundation, National Fire Protection Association, March, 2015.

Literature Review on Hybrid Fire Suppression Systems
Raia, P. and Gollner, M.J., Fire Protection Research Foundation, National Fire Protection Association, May 2014.

Fire Safety Design and Sustainable Buildings: Challenges and Opportunities: Report of a National Symposium
Gollner, M.J., Kimball, A. and Vecchiarelli, T., Fire Protection Research Foundation, National Fire Protection Association, 2013.

Copyright Notes

In following copyright law, most journals allow their authors to share post-prints of their journal articles (essentially pre-prints with changes from the review process but lacking any publisher modifications or typesetting). Therefore, I have posted PDF Post-Prints of most journal articles in addition to document object identifier (DOI) links to the articles on the publishers site (sometimes requiring subscription). For more information about journal copyrights, please visit http://www.sherpa.ac.uk/romeo/. I have posted some conference proceedings on Research Gate. If you do not have access to a final article version, please contact me.

  • Berkeley Engineering
  • UC Berkeley
  • youtube
  • facebook
  • X
  • Privacy
  • Accessibility
  • Nondiscrimination

© 2016–2025 UC Regents   |   Log in