• Skip to main content
  • Skip to primary navigation
Header Search Widget

Mechanical Engineering, University of California, Berkeley

  • News
  • Research
    • Facilities
    • Software
  • Team
    • Our Team
    • Prof. Gollner
    • Join our Team
  • Publications
  • Resources
    • Resources and Links
    • Wildfire Resources
    • Opportunities
    • Recommendations
    • Software
    • Directions and Contact
  • Learning Material

Publications

 Google Scholar Citations | Research Gate Profile | UC eScholarship Repository (Pre-Prints) | Reports, Articles and Theses | Dataset Repositry

Show all

1.

Proceedings of the first workshop organized by the IAFSS Working Group on Measurement and Computation of Fire Phenomena (MaCFP) Journal Article

In: Fire Safety Journal, vol. 101, pp. 1 - 17, 2018, ISSN: 0379-7112.

Abstract | Links | BibTeX

@article{BROWN20181,
title = {Proceedings of the first workshop organized by the IAFSS Working Group on Measurement and Computation of Fire Phenomena (MaCFP)},
url = {http://www.sciencedirect.com/science/article/pii/S0379711218301814},
doi = {https://doi.org/10.1016/j.firesaf.2018.08.009},
issn = {0379-7112},
year = {2018},
date = {2018-01-01},
journal = {Fire Safety Journal},
volume = {101},
pages = {1 - 17},
abstract = {This paper provides a report of the discussions held at the first workshop on Measurement and Computation of Fire Phenomena (MaCFP) on June 10\textendash11 2017. The first MaCFP workshop was both a technical meeting for the gas phase subgroup and a planning meeting for the condensed phase subgroup. The gas phase subgroup reported on a first suite of experimental-computational comparisons corresponding to an initial list of target experiments. The initial list of target experiments identifies a series of benchmark configurations with databases deemed suitable for validation of fire models based on a Computational Fluid Dynamics approach. The simulations presented at the first MaCFP workshop feature fine grid resolution at the millimeter- or centimeter-scale: these simulations allow an evaluation of the performance of fire models under high-resolution conditions in which the impact of numerical errors is reduced and many of the discrepancies between experimental data and computational results may be attributed to modeling errors. The experimental-computational comparisons are archived on the MaCFP repository [1]. Furthermore, the condensed phase subgroup presented a review of the main issues associated with measurements and modeling of pyrolysis phenomena. Overall, the first workshop provided an illustration of the potential of MaCFP in providing a response to the general need for greater levels of integration and coordination in fire research, and specifically to the particular needs of model validation.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

This paper provides a report of the discussions held at the first workshop on Measurement and Computation of Fire Phenomena (MaCFP) on June 10–11 2017. The first MaCFP workshop was both a technical meeting for the gas phase subgroup and a planning meeting for the condensed phase subgroup. The gas phase subgroup reported on a first suite of experimental-computational comparisons corresponding to an initial list of target experiments. The initial list of target experiments identifies a series of benchmark configurations with databases deemed suitable for validation of fire models based on a Computational Fluid Dynamics approach. The simulations presented at the first MaCFP workshop feature fine grid resolution at the millimeter- or centimeter-scale: these simulations allow an evaluation of the performance of fire models under high-resolution conditions in which the impact of numerical errors is reduced and many of the discrepancies between experimental data and computational results may be attributed to modeling errors. The experimental-computational comparisons are archived on the MaCFP repository [1]. Furthermore, the condensed phase subgroup presented a review of the main issues associated with measurements and modeling of pyrolysis phenomena. Overall, the first workshop provided an illustration of the potential of MaCFP in providing a response to the general need for greater levels of integration and coordination in fire research, and specifically to the particular needs of model validation.

Close

  • http://www.sciencedirect.com/science/article/pii/S0379711218301814
  • doi:https://doi.org/10.1016/j.firesaf.2018.08.009

Close

Magazine Articles

Pathways for Building Fire Spread in the Wildland Urban Interface
Gollner, M.J., Society of Fire Protection Engineers’ Emerging Trends Newsletter, Issue 101. 2015

Pathways for Building Fire Spread in the Wildland Urban Interface
Gollner, M.J., SFPE Emerging Trends Newsletter, Society of Fire Protection Engineers, August, 2015.

The Flammability of a Storage Commodity
Gollner, M.J., Fire Protection Engineering Magazine, Society of Fire Protection Engineers, April 2014.

Theses

Effect of Microgravity on the Development and Structure of Fire Whirls

Jones, Michael, M.S. Thesis, University of Maryland College Park, 2020

A STUDY OF INTERMITTENT CONVECTIVE HEATING OF FINE LIVE WILDLAND FUELS

Orcurto, Ashlynne R, M.S. Thesis, Univeristy of Maryland, College Park, 2020

Laboratory Studies on the Generation of Firebrands from Cylindrical Wooden Dowels
Caton, Sara, M.S. Thesis, University of Maryland, College Park, 2017

Thermal Characterization of Firebrand Piles
Hakes, Raquel Sara Pilar, M.S. Thesis, University of Maryland, College Park, 2017

The Structure of the Blue Whirl: A Soot-Free Reacting Vortex Phenomenon
Sriram Bharath Hariharan, M.S. Thesis, University of Maryland, College Park, 2017

Moisture Content Effects on Energy and Emissions Released During Combustion of Pyrophytic Vegetation
Nathaniel Andrew May, M.S. Thesis, University of Maryland, College Park, 2017
A Fundamental Study of Boundary Layer Diffusion Flames
Singh, Ajay. Ph.D. Thesis, University of Maryland, College Park, 2015.
In Situ Burning Alternatives
Cohen, Brian, M.S. Thesis, University of Maryland, College Park, 2014.
Flame Spread Through Wooden Dowels
Zhao, Zhao, M.S. Thesis, University of Maryland, College Park, 2014.
Upward Flame Spread over Discreet Fuels
Miller, Colin, M.S. Thesis, University of Maryland, College Park, 2014
Studying Wildland Fire Spread Using Stationary Burners
Gorham, D.J., M.S. Thesis, University of Maryland, College Park, 2014.
Transient Fire Load on Aluminum Ferries (PDF)
Hall, B. M.S. Thesis, University of Maryland, College Park, 2014.
Studies on Upward Flame Spread (PDF, Official Copy, Presentation)
Gollner, MJ. Ph.D. Dissertation, University of California, San Diego, 2012.
A Fundamental Approach to Storage Commodity Classification (PDF, Proquest, Presentation)
Gollner, M.J. M.S. Thesis, University of California, San Diego, 2010.

Reports

Literature Review on Spaceport Fire Safety (NFPA Site)
Erin Griffith, Alicea Fitzpatrick, Seth Lattner, Joseph Dowling, Michael J. Gollner

Towards Data-Driven Operational Wildfire Spread Modeling: A REPORT OF THE NSF-FUNDED WIFIRE WORKSHOP
Gollner, M.J. and Trouve, A., 2015.

Pathways for Building Fire Spread at the Wildland Urban Interface (NFPA Site)
Gollner, M.J., Hakes, R., Caton, S. and Kohler, K., Fire Protection Research Foundation, National Fire Protection Association, March, 2015.

Literature Review on Hybrid Fire Suppression Systems
Raia, P. and Gollner, M.J., Fire Protection Research Foundation, National Fire Protection Association, May 2014.

Fire Safety Design and Sustainable Buildings: Challenges and Opportunities: Report of a National Symposium
Gollner, M.J., Kimball, A. and Vecchiarelli, T., Fire Protection Research Foundation, National Fire Protection Association, 2013.

Copyright Notes

In following copyright law, most journals allow their authors to share post-prints of their journal articles (essentially pre-prints with changes from the review process but lacking any publisher modifications or typesetting). Therefore, I have posted PDF Post-Prints of most journal articles in addition to document object identifier (DOI) links to the articles on the publishers site (sometimes requiring subscription). For more information about journal copyrights, please visit http://www.sherpa.ac.uk/romeo/. I have posted some conference proceedings on Research Gate. If you do not have access to a final article version, please contact me.

  • Berkeley Engineering
  • UC Berkeley
  • youtube
  • facebook
  • X
  • Privacy
  • Accessibility
  • Nondiscrimination

© 2016–2025 UC Regents   |   Log in