• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Header Search Widget

Mechanical Engineering, University of California, Berkeley

  • News
  • Research
    • Facilities
    • Software
  • Team
    • Our Team
    • Prof. Gollner
    • Join our Team
  • Publications
  • Resources
    • Resources and Links
    • Wildfire Resources
    • Opportunities
    • Recommendations
    • Software
    • Directions and Contact
  • Learning Material

Paper Accepted to 34th International Symposium on Combustion

April 14, 2012 by admin

Our paper, an Experimental Study of Upward Flame Spread and Burning of an
Inclined Fuel Surface has been accepted to the 34th International Symposium on Combustion! The conference will be held this summer in Warsaw, Poland.


Paper by: M.J. Gollner, X. Huang, J. Cobian, A.S. Rangwala and F.A. Williams


ABSTRACT:

A thermally thick slab of polymethyl methacrylate was used to study the effects of the inclination angle of a fuel surface on upward flame spread. While investigation of upward spread over solid fuels has typically been restricted to an upright orientation, inclination of the fuel surface from the vertical is a common occurrence that has not yet been adequately addressed. By performing experiments on 10 cm wide by 20 cm tall fuel samples it was found that the maximum flame-spread rate, occurring nearly in a vertical configuration, does not correspond to the maximum fuel mass-loss rate, which occurs closer to a horizontal configuration. A detailed study of both flame spread and steady burning at different angles of inclination revealed the
influence of buoyancy-induced flows in modifying heat-flux profiles ahead of the flame front, which control flame spread, and in affecting the heat flux to the burning surface of the fuel, which controls fuel mass-loss rates.


I will post a pre-print of the article soon.

Filed Under: News, Uncategorized

Primary Sidebar

Recent Posts

  • Students present at Stanford Combustion conference
  • Professor Gollner testifies to Congress
  • Christina Liveretou awarded Onassis Foundation Scholarship
  • Congratulations to Xingyu Ren on the SFPE Student Scholar Award!
  • Prof. Gollner Presents at 2021 UC Wildfire Symposium Series

Michael GollnerFollow5,9772,359

Michael Gollner
Retweet on TwitterMichael Gollner Retweeted
27 Mar

Smoke flow produced by smouldering combustion

Reply on TwitterRetweet on Twitter3Like on Twitter22Twitter
Retweet on TwitterMichael Gollner Retweeted
24 Mar

Units being released.

Sounds like early indications show a lithium ion battery responsible. (Scooter battery most likely)

Reply on TwitterRetweet on Twitter1Like on Twitter7Twitter
22 Mar

Beautiful work by ⁦@Xiaoyu_Ju⁩ & Yuji Nakamura: New Technique Generates Non-Flickering Flames at Normal Gravity and Atmospheric Pressure. I’ve watched this flickering flame development for years and the results have been fascinating

APS Physics

New Technique Generates Non-Flickering Flames at Normal Gravity and Atmospheric Pressure

Flickering flames are more unstable. Researchers have come up with a novel way to keep them still.

www.aps.org

Reply on TwitterRetweet on Twitter1Like on Twitter9Twitter
Load More...
  • Berkeley Engineering
  • UC Berkeley
  • PRIVACY
  • ACCESSIBILITY
  • NONDISCRIMINATION
  • youtube
  • facebook
  • twitter

© 2016–2023 UC Regents   |   Log in